## The First Transition Metal $\eta^2$ -SiH<sub>4</sub> Complexes, cis-Mo( $\eta^2$ -SiH<sub>4</sub>)(CO)(R<sub>2</sub>PC<sub>2</sub>H<sub>4</sub>PR<sub>2</sub>)<sub>2</sub>, and Unprecedented Tautomeric Equilibrium between an $\eta^2$ -Silane Complex and a Hydridosilyl Species: A Model for Methane Coordination and Activation

Xiao-Liang Luo,\* Gregory J. Kubas,\* Carol J. Burns, Jeffrey C. Bryan, and Clifford J. Unkefer

> Materials and Chemical Design Group (CST-10) Mail Stop C346, Los Alamos National Laboratory Los Alamos, New Mexico 87545

## Received September 28, 1994

In recent years there has been great interest in the activation of methane by transition metal complexes in the hope of developing catalytic methane conversion.<sup>1</sup> Several organome-tallic systems are now known to cleave a C-H bond of methane to give hydridomethyl complexes.<sup>2</sup> However, the pathway by which the C-H bond cleavage occurs is less clear. There is a growing body of theoretical<sup>3</sup> and experimental data<sup>4</sup> in support of the intermediacy of a methane complex along the reaction coordinate for oxidative addition/reductive elimination of methane at transition metal centers, but the structure of such a methane complex is unknown. By analogy to the wellcharacterized  $\eta^2$ -H<sub>2</sub> complexes (A),<sup>5</sup> it seems likely that methane could coordinate to the metal in an  $\eta^2$ -fashion via a C-H  $\sigma$ bond (B). Although the isolation of a stable methane complex

has been considered achievable,<sup>6</sup> the goal remains elusive. This prompted us to investigate the binding modes of SiH<sub>4</sub>, a heavier congener of CH<sub>4</sub>, toward transition metals in order to gain insight into methane coordination and activation. Here we describe the first examples of transition metal  $\eta^2$ -SiH<sub>4</sub> complexes (C), in which SiH<sub>4</sub> is coordinated to the metal in an  $\eta^2$ -fashion via a Si-H  $\sigma$  bond, and an unprecedented tautomeric equilibrium between an  $\eta^2$ -SiH<sub>4</sub> complex and a hydridosilyl species (eq 1), which serves as a model for methane coordination and subsequent activation.

$$L_{n}M \stackrel{H}{\underset{\text{SiH}_{3}}{\longleftarrow}} L_{n}M \stackrel{H}{\underset{\text{SiH}_{3}}{\longleftarrow}} (1)$$

We recently reported that the agostic Mo···H-C interaction in  $Mo(CO)(R_2PC_2H_4PR_2)_2$  is readily displaced by primary or secondary silanes to give  $\eta^2$ -silane complexes.<sup>7</sup> This is the first system in which Si-H, H-H, and agostic C-H  $\sigma$  bonds can be bound to the same metal fragment in an  $\eta^2$ -fashion. We

(b) Cundari, T. R. J. Am. Chem. Soc. 1994, 116, 340 and references therein.
(4) (a) Bullock, R. M.; Headford, C. E. L.; Hennessy, K. M.; Kegley, S. E.; Norton, J. R. J. Am. Chem. Soc. 1989, 111, 3897. (b) Gould, G. L.; Heinekey, D. M. J. Am. Chem. Soc. 1989, 111, 5502. (c) Parkin, G.; Bercaw, J. E. Organometallics 1989, 8, 1172.
(5) (a) Kubas, G. J. Acc. Chem. Res. 1988, 21, 120. (b) Luo, X.-L.; Crabtree, R. H.; Michos, D. Chemtracts: Inorg. Chem. 1991, 3, 245. (c) Jessop, P. G.; Morris, R. H. Coord. Chem. Rev. 1992, 121, 155. (d) Crabtree, R. H. Angew. Chem., Int. Ed. Engl. 1993, 32, 789. (e) Heinekey, D. M.; Oldham, W. J., Jr. Chem. Rev. 1993, 93, 913. (6) Brookhart, M.; Green, M. L. H.; Wong, L.-L. Prog. Inorg. Chem. 1988, 36. 1.

1988, 36, 1.

(7) Luo, X.-L.; Kubas, G. J.; Bryan, J. C.; Burns, C. J.; Unkefer, C. J. J. Am. Chem. Soc. 1994, 116, 10312.

have now found that reactions of  $Mo(CO)(R_2PC_2H_4PR_2)_2$  (R = Ph (1a),<sup>8</sup> Bu<sup>i</sup> (1b)<sup>9</sup>) with 1 equiv of SiH<sub>4</sub> in toluene give the first examples of  $\eta^2$ -SiH<sub>4</sub> complexes *cis*-Mo( $\eta^2$ -SiH<sub>4</sub>)(CO)(R<sub>2</sub>- $PC_2H_4PR_2_2$  (R = Ph (2), Bu<sup>i</sup> (3)) (eq 2), which are isolated as yellow solids.<sup>10</sup> The <sup>31</sup>P{<sup>1</sup>H} NMR spectrum of 2 or 3 at room

$$M_{O}(CO)(R_{2}PC_{2}H_{4}PR_{2})_{2} \qquad \underbrace{SiH_{4}}_{R_{2}} \qquad \underbrace{R_{2}P_{H_{M_{m_{1}}}}}_{PR_{2}} \qquad \underbrace{R_{2}P_{H_{M_{m_{1}}}}}_{PR_{2}} \qquad \underbrace{R_{2}P_{M_{M_{m_{1}}}}}_{PR_{2}} \qquad \underbrace{R_{2}P_{M_{m_{1}}}}_{PR_{2}} \qquad \underbrace{R_{2}P_{M_{m_{1}}}}_{PR_{2}} \qquad \underbrace{R_{2}P_{M_{m_{1}}}}_{PR_{2}} \qquad \underbrace{R_{2}P_{M_{m_{1}}}}}_{PR_{2}} \qquad \underbrace{R_{2}P_{M_{m_{1}}}}_{PR_{2}} \qquad \underbrace{R_{2}P_{M_{m_{1}}}}_{PR_{2}} \qquad \underbrace{R_{2}P_{M_{m_{1}}}}_{PR_{2}} \qquad \underbrace{R_{2}P_{M_{m_{1}}}}_{PR_{m_{1}}} \qquad \underbrace{R_{2}P_{M_{m_{1}}} \qquad \underbrace{R_{2}P_{M_{m_{1}}}}_{PR_{m_{1}}} \qquad \underbrace{R_{2}P_{M_{m_{1}}}}_{PR_$$

temperature shows four multiplet resonances each integrating for one phosphorus, indicating that all phosphorus nuclei are inequivalent. This is consistent with a six-coordinate octahedral structure, as shown in eq 2, with one Si-H  $\sigma$  bond of SiH<sub>4</sub> occupying a site cis to the CO. In contrast, if 2 and 3 were formulated as seven-coordinate hydridosilyl complexes, they would probably be fluxional at room temperature and give a single resonance in the  ${}^{31}P{}^{1}H$  NMR spectra. Fluxionality has been a general observation for seven-coordinate complexes due to low-barrier intramolecular rearrangements.<sup>11</sup>

The  $\eta^2$ -coordination of SiH<sub>4</sub> in **2** and **3** is confirmed by the observation of  $J_{\text{SiH}}$  coupling constants (Table 1) for the  $\eta^2$ -bound Si-H bonds. The high-field region of the <sup>1</sup>H NMR spectrum of 2 or 3 shows a multiplet resonance assignable to the  $\eta^2$ bound Si-H proton which is coupled to the four inequivalent phosphorus nuclei. Decoupling of the <sup>31</sup>P nuclei causes the multiplet resonance to collapse into a singlet flanked by <sup>29</sup>Si satellites. The  $J_{SiH}$  values of 50 and 31 Hz for 2 and 3, respectively, fall within the range of values (20-70 Hz) found for the known  $\eta^2$ -silane complexes in which the silicon bears one or more substituents other than hydrogen.<sup>7,12</sup> These results suggest that 2 and 3 are better formulated as six-coordinate  $\eta^2$ -SiH<sub>4</sub> complexes than as seven-coordinate hydridosilyl species.

The X-ray crystal structure of **3** is shown in Figure 1.<sup>13</sup> The four hydrogen atoms on the Si were not located due to a positional disorder between the  $\eta^2$ -SiH<sub>4</sub> and CO ligands. If the molybdenum-bound Si-H hydrogen is disregarded, the coordination geometry about the molybdenum is that of a distorted octahedron, with the CO and Si being cis to each other. In addition, the geometry of the MoP<sub>4</sub>CSi core is very similar to that in the related compound cis-Mo( $\eta^2$ -H-SiH<sub>2</sub>Ph)(CO)(Et<sub>2</sub>C<sub>2</sub>H<sub>4</sub>-

(11) Luo, X.-L.; Schulte, G. K.; Demou, P.; Crabtree, R. H. Inorg. Chem. 1990, 29, 4268 and references therein.

(12) Schubert, H. Adv. Organomet. Chem. 1990, 30, 151.

(13) Crystal data for 3: light yellow prism, 0.16 × 0.18 × 0.35 mm<sup>3</sup>;  $M_{\rm r} = 793.0$ ; triclinic, space group P1; a = 10.362(2) Å, b = 10.455(2) Å, c = 24.034(5) Å,  $\alpha = 77.76(3)^\circ$ ,  $\beta = 77.62(3)^\circ$ ,  $\gamma = 63.27(3)^\circ$ , V = 2251Å<sup>3</sup>, Z = 2;  $D_{\rm calcd} = 1.164$  g/cm<sup>3</sup>; Enraf-Nonius CAD4 diffractometer; 193 K: Mo K $\alpha$  radiation ( $\lambda = 0.710$  73 Å); scan method  $\omega$ ; data collection range 4.0-50.0°; total number of reflections measured, 8379; number of independent reflections, 7898 ( $R_{int} = 2.0\%$ ); number of observed reflections, 5282 ( $F > 4.0\sigma(F)$ ). The structure was solved by direct methods and refined by a full matrix least-squares procedure to give final residuals of R = 0.050 and  $R_w = 0.061$ ; GOF = 1.20.

0002-7863/95/1517-1159\$09.00/0

© 1995 American Chemical Society

<sup>(1)</sup> Activation and Functionalization of Alkanes; Hill, C. L., Ed.; Wiley: New York, 1989.

 <sup>(2) (</sup>a) Hoyano, J. K.; McMaster, A. D.; Graham, W. A. G. J. Am. Chem.
 Soc. 1983, 105, 7190. (b) Wax, M. J.; Stryker, J. M.; Buchanan, J. M.;
 Kovac, C. A.; Bergman, R. G. J. Am. Chem. Soc. 1984, 106, 1121. (c)
 Hackett, M.; Whitesides, G. M. J. Am. Chem. Soc. 1988, 110, 1449.

<sup>(3) (</sup>a) Saillard, J.-Y.; Hoffmann, R. J. Am. Chem. Soc. 1984, 106, 2006. (b) Cundari, T. R. J. Am. Chem. Soc. 1994, 116, 340 and references therein.

<sup>(8)</sup> Sato, M.; Tatsumi, T.; Kodama, T.; Hidai, M.; Uchida, T.; Uchida, Y. J. Am. Chem. Soc. **1978**, 100, 4447. (9) Kubas, G. J.; Burns, C. J.; Eckert, J.; Johnson, S. W.; Larson, A. C.; Vergarnini, P. J.; Unkefer, C. J.; Khalsa, G. R. K.; Jackson, S. A.; Eisenstein, O. J. Am. Chem. Soc. **1993**, 115, 569. (10) Data for **2**: <sup>1</sup>H[<sup>31</sup>P] NMR (C<sub>6</sub>D<sub>6</sub>, 298 K)  $\delta$  6.2–8.0 (m, Ph. 40 H), 4.46 (s, <sup>1</sup>J<sub>SiH</sub> = 181 Hz, 3 H, SiH<sub>3</sub>), 1.7–2.4 (m, 8 H, CH<sub>2</sub>), -6.87 (s, J<sub>SiH</sub> = 50 Hz, 1 H, Mo( $\eta^2$ -H-Si)); <sup>31</sup>P[<sup>1</sup>H] NMR (C<sub>6</sub>D<sub>6</sub>, 298 K)  $\delta$  72.1 (m, 1 P), 66.9 (m, 1 P), 56.9 (m, 1 P), 44.9 (m, 1 P); IR (Nujol, cm<sup>-1</sup>)  $\nu$ (Si–H) 2081, 2028, 2000,  $\nu$ (CO) 1783,  $\nu$ (Mo–H–Si) 1743. Anal. Calcd for C<sub>33</sub>: <sup>1</sup>H[<sup>31</sup>P] NMR (C<sub>6</sub>D<sub>6</sub>, 298 K)  $\delta$  4.34 (s, <sup>1</sup>J<sub>SiH</sub> = 163 Hz, 3 H, SiH<sub>3</sub>), 0.9–2.8 (m, 80 H, Bu<sup>1</sup><sub>2</sub>PC<sub>2</sub>H<sub>4</sub>PBu<sup>1</sup><sub>2</sub>), -7.98 (s, J<sub>SiH</sub> = 31 Hz, 1 H, Mo-( $\eta^2$ -H-Si)); <sup>31</sup>P[<sup>1</sup>H] NMR (C<sub>6</sub>D<sub>6</sub>, 298 K)  $\delta$  67.3 (m, 1 P), 52.9 (m, 1 P), 46.9 (m, 1 P), 37.2 (m, 1 P); IR (Nujol, cm<sup>-1</sup>)  $\nu$ (Si–H) 2059, 2028, 1967,  $\nu$ (CO) 1788,  $\nu$ (Mo–H–Si) 1752. Anal. Calcd for C<sub>37</sub>H<sub>84</sub>MoOP<sub>4</sub>Si: C, 56.04; H, 10.68. Found: C, 55.72; H, 10.51. (11) Luo, X.-L.; Schulte, G. K.; Demou, P.; Crabtree, R. H. Inorg. Chem.

**Table 1.**  $J_{SiH}$  Coupling Constants<sup>*a*</sup> for *cis*-Mo( $\eta^2$ -SiH<sub>4</sub>)(CO)(R<sub>2</sub>PC<sub>2</sub>H<sub>4</sub>PR<sub>2</sub>)<sub>2</sub>

| complex | R   | $J_{SiMoH} (Hz)^b$ | $^{1}J_{\rm SiH}~({\rm Hz})^{c}$ |
|---------|-----|--------------------|----------------------------------|
| 2       | Ph  | 50                 | 181                              |
| 3       | Bui | 31                 | 163                              |
| 4a      | Et  | 35                 | 164                              |

<sup>*a*</sup> Measured by <sup>1</sup>H{<sup>31</sup>P} NMR. <sup>*b*</sup> Si-H coupling constants for  $\eta^2$ -bound Si-H bonds. <sup>*c*</sup> Si-H coupling constants for uncoordinated Si-H bonds.



**Figure 1.** ORTEP drawing with 50% probability ellipsoids (one of each pair of disordered atoms is omitted for clarity) of *cis*-Mo( $\eta^2$ -SiH<sub>4</sub>)(CO)(Bu<sup>i</sup><sub>2</sub>-PC<sub>2</sub>H<sub>4</sub>PBu<sup>i</sup><sub>2</sub>)<sub>2</sub> (3). Selected bond lengths (Å) and angles (deg): Mo-P(1), 2.525(2); Mo-P(2), 2.479(2); Mo-P(3), 2.531(2); Mo-P(4), 2.454(2); Mo-C(5), 1.927(11); Mo-Si, 2.556(4); P(2)-Mo-P(4), 174.5(1); Si-Mo-C(5), 82.2(3); P(1)-Mo-Si, 92.3(1); P(2)-Mo-Si, 79.0(1); P(3)-Mo-Si, 168.7(1); P(4)-Mo-Si, 106.1(1).



Figure 2. High-field region of variable-temperature <sup>1</sup>H NMR spectra (500.13 MHZ) of an equilibrium mixture of 4a and 4b in  $C_6D_5CD_3$ .

PEt<sub>2</sub>)<sub>2</sub>,<sup>7</sup> in which the three hydrogen atoms on the Si were located, confirming the  $\eta^2$ -coordination of a Si-H  $\sigma$  bond. The Mo-Si distances in the two compounds (2.556 and 2.501 Å) are also similar. Thus, the crystal structure of **3** is consistent with the  $\eta^2$ -SiH<sub>4</sub> coordination observed in solution by NMR.

Reaction of Mo(CO)(Et<sub>2</sub>PC<sub>2</sub>H<sub>4</sub>PEt<sub>2</sub>)<sub>2</sub> (1c)<sup>9</sup> with 1 equiv of SiH<sub>4</sub> in toluene gives *cis*-Mo( $\eta^2$ -SiH<sub>4</sub>)(CO)(Et<sub>2</sub>PC<sub>2</sub>H<sub>4</sub>PEt<sub>2</sub>)<sub>2</sub> (4a) (eq 3), which is isolated as a pale yellow solid.<sup>14</sup> Remarkably,



in solution the  $\eta^2$ -SiH<sub>4</sub> complex **4a** is in equilibrium with its seven-coordinate hydridosilyl tautomer MoH(SiH<sub>3</sub>)(CO)(Et<sub>2</sub>-PC<sub>2</sub>H<sub>4</sub>PEt<sub>2</sub>)<sub>2</sub> (**4b**) (eq 3). Thus, the high-field region of the <sup>1</sup>H NMR spectrum (Figure 2) at 298 K shows two resonances, with the broad multiplet at  $\delta - 8.27$  assigned to the  $\eta^2$ -bound Si-H proton of **4a** and the broad quintet at  $\delta - 7.58$  assigned to the terminal hydride ligand of **4b**. The broadness of the two resonances is due to the exchange between **4a** and **4b**. Accordingly, upon cooling of the sample the two resonances become sharp, whereas upon heating they broaden and then coalesce into a broad feature. Similar temperature-dependent



Figure 3. Variable-temperature  ${}^{31}P{}^{1}H{}$  NMR spectra (202.46 MHz) of an equilibrium mixture of 4a and 4b in C<sub>6</sub>D<sub>5</sub>CD<sub>3</sub>.

behavior is observed for the two resonances arising from the uncoordinated SiH<sub>3</sub> protons of **4a** and **4b**. The  $\eta^2$ -SiH<sub>4</sub> coordination in **4a** is confirmed by the  $J_{\text{SiH}}$  coupling constant of 35 Hz (Table 1) observed for the  $\eta^2$ -bound Si-H bond by <sup>1</sup>H{<sup>31</sup>P} NMR.

The coexistence of **4a** and **4b** is also demonstrated by <sup>31</sup>P-{<sup>1</sup>H} NMR (Figure 3). At 298 K, four resonances are observed for **4a**, as in the case of **2** and **3**, which is consistent with the six-coordinate octahedral structure, whereas no resonances are observed for **4b** due to the fluxionality of the seven-coordinate structure.<sup>11</sup> Cooling the sample below 298 K leads to the gradual appearance of four new resonances assignable to **4b**. Heating the sample above 298 K causes exchange of **4a** with **4b**, and only an averaged resonance is observed at 368 K.

Although several examples of tautomeric equilibria between an  $\eta^2$ -H<sub>2</sub> complex and a dihydride species are known,<sup>15</sup> eq 3 represents the first example of tautomeric equilibrium between an  $\eta^2$ -silane complex and a hydridosilyl species. The ratio of **4a** to **4b** is temperature-dependent, and <sup>1</sup>H NMR integration yields thermodynamic parameters for conversion of **4a** to **4b**:  $\Delta H = -0.61 \pm 0.2$  kcal/mol and  $\Delta S = -2.1 \pm 0.7$  eu.

It is of interest to note that both the NMR data of 2, 3, and 4a and the crystal structure of 3 indicate that the  $\eta^2$ -SiH<sub>4</sub> and CO ligands are cis to each other in an octahedral structure, which is in contrast to the related  $\eta^2$ -H<sub>2</sub> complexes *trans*-Mo( $\eta^2$ -H<sub>2</sub>)(CO)(PR<sub>2</sub>PC<sub>2</sub>H<sub>4</sub>PR<sub>2</sub>)<sub>2</sub> (R = Ph,<sup>9</sup> CH<sub>2</sub>Ar<sup>16</sup>), in which the  $\eta^2$ -H<sub>2</sub> and CO ligands are trans to each other. This structural difference is likely to have electronic origin, since the  $\eta^2$ -SiH<sub>4</sub> ligand is sterically not very demanding. It is conceivable that the higher  $\pi$ -accepting ability of SiH<sub>4</sub> as compared to H<sub>2</sub> favors SiH<sub>4</sub> being cis to the strongly  $\pi$ -accepting CO ligand.

In summary, we have synthesized the first examples of transition metal  $\eta^2$ -SiH<sub>4</sub> complexes and obtained spectroscopic evidence for an unprecedented tautomeric equilibrium between an  $\eta^2$ -SiH<sub>4</sub> complex and a hydridosilyl species. The  $\eta^2$ -coordination of SiH<sub>4</sub> in **4a** followed by Si-H bond cleavage to give the hydridosilyl species **4b** serves as a model for methane coordination and subsequent activation.

Acknowledgment, This work is supported by Los Alamos National Laboratory's LDRD funding. X.-L. L. is grateful to the Director of the Laboratory for postdoctoral funding.

**Supplementary Material Available:** X-ray diffraction data for **3** (10 pages). This material is contained in many libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

JA943203U

<sup>(14)</sup> Data for **4a** and **4b**:  ${}^{1}H{}^{31}P{}$  NMR (C<sub>6</sub>D<sub>5</sub>CD<sub>3</sub>, 268 K)  $\delta$  4.56 (s,  ${}^{1}J_{SiH} = 164$  Hz, SiH<sub>3</sub>, **4a**), 3.48 (s,  ${}^{1}J_{SiH} = 143$  Hz, SiH<sub>3</sub>, **4b**), 0.5–2.0 (m, PC<sub>2</sub>H<sub>4</sub>P, C<sub>2</sub>H<sub>5</sub>), -7.57 (s, MoH, **4b**), -8.23 (s, J<sub>SiH</sub> = 35 Hz, Mo( $\eta^{2}$ -H-Si), **4a**),  ${}^{31}P{}^{1}H{}$  NMR (C<sub>6</sub>D<sub>5</sub>CD<sub>3</sub>, 238 K)  $\delta$  83.3 (m, 1 P, **4b**), 67.4 (m, 1 P, **4a**), 63.9 (m, 1 P, **4b**), 63.4 (m, 1 P, **4b**), 53.1 (m, 1 P, **4a**), 46.4 (m, 1 P, **4a**), 39.1 (m, 1 P, **4a**), 35.2 (m, 1 P, **4b**), IR (Nujol, cm<sup>-1</sup>)  $\nu$ (Si-H) 2047, 1995, 1972,  $\nu$ (CO) 1775,  $\nu$ (Mo-H-Si) 1732. Anal. Calcd for C<sub>21</sub>H<sub>52</sub>MoOP<sub>4</sub>Si: C, 44.36; H, 9.22. Found: C, 44.24; H, 9.14.

<sup>(15) (</sup>a) Kubas, G. J.; Unkefer, C. J.; Swanson, B. I.; Fukushima, E. F. J. Am. Chem. Soc. 1986, 108, 7000. (b) Kubas, G. J.; Ryan, R. R.; Unkefer, C. J. J. Am. Chem. Soc. 1987, 109, 8113. (c) Conroy-Lewis, F. M.; Simpson, S. J. J. Chem. Soc., Chem. Commun. 1987, 1675. (d) Chinn, M. S.; Heinekey, D. M. J. Am. Chem. Soc. 1987, 109, 5865. (e) Luo, X.-L.; Crabtree, R. H. J. Chem. Soc., Chem. Commun. 1990, 189. (f) Luo, X.-L.; Crabtree, R. H. J. Am. Chem. Soc. 1990, 112, 6912. (g) Jia, G.; Morris, R. H. J. Am. Chem. Soc. 1990, 112, 6912. (g) Jia, G.; Morris, R. H. J. Am. Chem. Soc. 1991, 113, 875. (h) Luo, X.-L.; Michos, D.; Crabtree, R. H. Organometallics 1992, 11, 237.

<sup>(16)</sup> Luo, X.-L.; Kubas, G. J.; Burns, C. J.; Eckert, J. Inorg. Chem. 1994, 33, 5219.